Calcaneal Quantitative Ultrasound Indicates Reduced Bone Status Among Physically Active Adult Forager-Horticulturalists

Jonathan Stieglitz,1,2 Felicia Madimenos,3 Hillard Kaplan,1,2 and Michael Gurven4

1Institute for Advanced Study in Toulouse, Université de Toulouse, Toulouse Cedex 6, France
2Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
3Department of Anthropology, Queens College-CUNY, Queens, NY, USA
4Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, USA

ABSTRACT
Sedentary lifestyle contributes to osteoporosis and fragility fracture risks among modern humans, but whether such risks are prevalent in physically active preindustrial societies with lower life expectancies is unclear. Osteoporosis should be readily observable in preindustrial societies if it was regularly experienced over human history. In this study of 142 older adult Tsimane forager-horticulturalists (mean age ± SD, 62.1 ± 8.6 years; range, 50 to 85 years; 51% female) we used calcaneal quantitative ultrasonography (qUS) to assess bone status, document prevalence of adults with reduced bone status, and identify factors (demographic, anthropometric, immunological, kinesthetic) associated with reduced bone status. Men (23%) are as likely as women (25%) to have reduced bone status, although age-related decline in qUS parameters is attenuated for men. Adiposity and fat-free mass positively co-vary with qUS parameters for women but not men. Leukocyte count is inversely associated with qUS parameters controlling for potential confounders; leukocyte count is positively correlated within adults over time, and adults with persistently low counts have higher adjusted qUS parameters (6% to 8%) than adults with a high count. Reduced bone status characteristic of osteoporosis is common among active Tsimane with minimal exposure to osteoporosis risk factors found in industrialized societies, but with energetic constraints and high pathogen burden. © 2015 American Society for Bone and Mineral Research.

KEY WORDS: OSTEOPOROSIS; BONE MINERAL DENSITY; ANTHROPOMETRICS; IMMUNE ACTIVATION; PHYSICAL ACTIVITY

Introduction
Osteoporosis is characterized by low bone mineral density (BMD) and bone strength, and for both sexes is linked to major morbidity and mortality secondary to fractures.1,2 Osteoporosis is underdiagnosed and undertreated, including in world regions with advanced clinical infrastructure, because it is asymptomatic until fracture occurs. In industrialized societies, osteoporosis risk factors include older age, female sex, history of adult fracture (including family history), low body mass, nutrient deficiency, and physical inactivity.3 In developing countries and preindustrial societies, determinants and consequences of osteoporosis are poorly understood, although lower life expectancies may contribute to lower population prevalence of osteoporosis and absolute fracture risk due to mortality selection and young age structure.4,5 A recent study of rural agrarian Ecuadorians indicates a considerable prevalence of adults aged 50+ years with reduced bone status (43% women, 18% men),6 suggesting high osteoporosis risk despite a physically active lifestyle. In vivo studies in preindustrial societies are necessary to understand the ecological and energetic constraints under which human bones evolved.

Modern human osteoporosis susceptibility may be due to a postcranial skeleton that is more gracile (ie, lower bone mass for body size) than that of other hominoids and extinct hominins.7,8 Human thoracic vertebrae, which are commonly subject to fragility fracture, show reduced trabecular bone volume fraction and thinner vertebral shells compared to wild-shot apes after adjusting for body mass, with differences emerging in early adulthood.9 Reducions in trabecular bone volume fraction of the metatarsal head,10 calcaneus,11 femoral head,12 and metacarpal head13 have similarly been documented among modern humans compared to other extant apes. Within the genus Homo, earlier studies documented a decline in postcranial skeletal strength relative to body size throughout the Pleistocene,9,14 but recent studies suggest this decline occurred in the later Pleistocene or Holocene.7,15,16 Biomechanical correlates of habitual bipedality per se thus cannot fully account for modern human skeletal gracility.

One prominent hypothesis to explain skeletal gracility is that modern humans are less physically active than other hominoids.
and extinct hominins. Transition from a mobile hunting and gathering subsistence regime toward sedentary agriculture, and increasing reliance on technology, caused reductions in activity and mechanical loading on bone, leading to skeletal gracilization. Comparisons of adult skeletal remains of hunter-gatherers and either full-time or part-time agriculturalists reveal accelerated age-related decline in radial bone mineral content\(^{11,19}\) and reduced femoral strength among agriculturalists.\(^{7,19}\) Differences in limb strength have also been found among Later Stone Age (ca. 10,000 to 2000 BP) South African foragers and 19th century Andamanese foragers;\(^{20}\) the former were mobile terrestrial foragers whereas the latter were terrestrially constrained but adept seafarers, using canoes for transport and food procurement. As expected, if habitual subsistence activities (eg, hunting in rugged vertical terrain versus rowing) result in localized osteogenic responses, South Africans have relatively strong lower limbs and weaker upper limbs whereas Andamanese have weaker lower limbs and strong upper limbs. High activity level can thus result not only in stronger bones, but also localized redistribution of bone tissue in the direction of highest bending strains. These observations coupled with those from a separate clinical and kinesthetic literature\(^{21–23}\) suggest that insufficient skeletal loading leads to reduced peak bone mass, accelerated rate of bone loss, and increased risks of osteoporosis and fragility fractures.

This article explores whether physical activity level above the level characteristic of industrialized societies protects against age-related bone loss and fragility fracture risk. In paleopathological samples, fractures are common but usually result from excessive trauma rather than reduced bone strength, leading some to conclude that fragility fractures are rare in active preindustrial societies, even among the elderly.\(^{24,25}\) Yet despite limitations of paleopathological studies (eg, small and unrepresentative samples, imprecise age estimates), the archaeological record shows evidence of age-related bone loss, osteoporosis, and fragility fractures.\(^{24,26–29}\) Studies of contemporary preindustrial societies suggest that bone mass is not preserved in older adulthood,\(^{25,30,31}\) although direct evidence of fragility fractures is scant given logistical difficulties of bone imaging in remote geographical areas. Accelerated bone loss with age, which has also been documented among free-ranging chimpanzees,\(^{32}\) appears to be a basic feature of human aging, although most research among humans is done in industrialized societies.

There are several reasons why reduced bone status characteristic of osteoporosis might be expected even among active foragers with minimal exposure to osteoporosis risk factors found in industrialized societies (eg, glucocorticoid therapy) and lower life expectancies. First, energetic limitation, due to high energy expenditure relative to consumption, results in lower body mass, which reduces skeletal loading. Energetic limitation may also be associated with micronutrient deficiency, particularly of bone-forming minerals, which contributes to lower bone mass.\(^{21}\) Low body mass is associated with increased fracture risk even after adjusting for BMD;\(^{23}\) BMD alone explains roughly 75% of the variance in bone strength (ie, the ability to withstand an applied load).\(^{34}\) The greatest voluntary skeletal loads come from muscle contractions;\(^{22,23}\) but adipose tissue also increases loading and indirectly facilitates bone mineral acquisition and maintenance via endocrine mechanisms (eg, aromatization of adrenal androgens to estrogen).\(^{35–38}\) Positive associations between fat-free or fat mass and BMD are stronger among adults with low visceral fat stores,\(^{39}\) which is typical of active, energy-limited foragers.

Second, greater immune activation due to high pathogen exposure may result in reduced bone status among active foragers. Among Tsimane forager-horticulturalists, the population studied here, high pathogen burden increases immune activation throughout life.\(^{40}\) Pathogen burden is associated with elevated levels of inflammatory biomarkers (eg, interleukin-6) that stimulate osteoclastic bone resorption and inhibit osteoblast function in humans and other species.\(^{41–44}\) Intestinal parasites are also common among Tsimane (\(>70\%\) prevalence of helminth infection), and can impact mineral absorption efficiency,\(^{45}\) with potential downstream consequences for bone mineralization. Bone is normally a sterile area, but the most prevalent skeletal diseases are due to pathogenic actions on bone including destruction of noncellular bone components by liberation of acids and proteases (as in the case of dental caries, which are common among Tsimane), promotion of cellular processes stimulating bone degradation (eg, inflammation), and inhibition of bone matrix synthesis.\(^{46}\) Despite recognition that morbidity inhibits growth,\(^{47,48}\) and despite recognition that mediators of immune function regulate osteoblast and osteoclast activity,\(^{49,50}\) effects of pathogen burden and immune activation on bone properties have not been well-characterized among humans.

Study goals and hypotheses

In vivo study of bone properties in active preindustrial societies provides an opportunity to examine energetic and ecological factors that are often invisible to bioarchaeological inquiry, and to examine whether high physical activity level protects against age-related bone loss. Here we use calcaneal quantitative ultrasonography (qUS) to assess bone status, and we assess how qUS parameters are affected by variation in demographics, anthropometrics, immune activation, and physical activity among older adults (mean age \(\pm\) 5 SD, 62.1 \(\pm\) 8.6 years; range, 50 to 85 years).

We first report prevalence of adults with reduced bone status, and then identify factors associated with reduced bone status. We examine age-related decline (rate and overall magnitude) in qUS parameters, and the relative influence of adiposity and fat-free mass in affecting qUS parameters. We test whether effects of aging and anthropometrics on qUS parameters are stronger for women than men given declines in sex steroid hormone concentrations around menopause. Women are expected to have lower qUS parameters than men even after controlling for anthropometrics and other factors (eg, physical inactivity), which may vary by sex and independently affect bone status. We also test whether degree of physical limitation, an indicator of physical inactivity, is inversely associated with qUS parameters. We further test whether immune activation, as indicated by leukocyte (WBC) count, is inversely associated with qUS parameters. Finally, we examine whether WBC count is correlated within adults over time (at two time points). Bone remodeling cycles occur over several months,\(^{51}\) and we expect the inverse association between immune activation and qUS parameters to be stronger when immune activation is persistently high or low.

Subjects and Methods

Study population

Tsimane forager-horticulturalists of lowland Bolivia are semi-sedentary and live in >90 villages, nearly all of which lack running water and electricity. Tsimane have relatively short life
expectancy (life expectancy at birth, at age 15 years, and at age 45 years: $e_{42} = 42$ years, $e_{57} = 57$ years, and $e_{66} = 66$ years, respectively). Their diet consists of cultivated crops grown in small swiddens (66% of calories; mostly rice, plantains, sweet manioc, and corn), lean meat from hunting (17%), freshwater fish (7%), and fruits and nuts gathered from the forest (6%). Few Tsimane rear cattle (<5% of families), most cattle owners maintain small herds (<3 head) and do not process milk for consumption. Market foods (eg, pasta, sugar) and domesticated animals (eg, cattle, chicken, pig) each provide 2% of the daily calories, and eggs provide <0.5% of calories. Relative to Western dietary standards calcium intake is low (<320 mg/day, unpublished data), but intake of other bone-forming minerals is ample (magnesium: ~450 mg/day; zinc: ~11 mg/day) or high (phosphorus: ~1300 mg/day). Despite a lean diet and high fertility (total fertility rate = 9 births per woman) with prolonged on-demand breastfeeding, Tsimane women’s breast-milk concentration of long-chain polyunsaturated fatty acids is high relative to American women, and does not decline with parity or age. Higher parity and older age are, however, each associated with reduced bone status.

Tsimane display relatively high physical activity levels (PALS) typical of other subsistence populations. Women’s PAL is in the “moderate to active” range (PAL = 1.73 to 1.85) and remains constant throughout adulthood. Men’s PAL is considered “vigorously active” (PAL = 2.02 to 2.15), and declines by 10% to 20% from the peak (achieved in the late 20s) to older adulthood (age 60+ years). PALs among adults residing near the closest market town of San Borja are not substantially different than among adults residing in remote riverine or forest villages.

Tobacco consumption is minimal among Tsimane (for women in the present sample: mean ± SD pack-years = 0.10 ± 0.54; for men: 0.63 ± 1.15). Although 14% of women and 66% of men report occasional tobacco use (often from tobacco grown in home gardens), 97% of women and 77% of men have smoked less than one pack-year. Cigarette smoking (pack-years, or home gardens), 97% of women and 77% of men have smoked less than one pack-year. Cigarette smoking (pack-years, or physical limitation and inactivity over the long term, participants who reported no longer being able to carry heavy loads (eg, a quintal of rice, ~45 kg) scored higher than

Demographics, anthropometrics, immune activation, and physical limitation

Birth years were assigned based on a combination of methods described elsewhere (see Gurven and colleagues and the Supporting Information for additional details).

During medical exams, height was measured using a Seca Road Rod 214 stadiometer. Weight was measured using a Tanita Ironman InnerScan model BC-1500. This scale also measured body mass using proprietary prediction equations based on age, sex, height and weight (see the Supporting Information for additional details).

To measure immune activation, morning fasting blood specimens were collected by a trained biotechnician during annual medical exams. Immediately after sample collection WBC counts were conducted using a QBC Autoread Plus Dry Hematology System (Drucker Diagnostics, Port Matilda, PA, USA). Participants contributed blood samples at two time points; mean number of years ± SD between WBC count measures is 2.4 ± 1.6 years (mode = 1).

To assess degree of physical limitation, adults performed a modified battery of mild exercises originally used in the MacArthur Studies of Successful Aging (see the Supporting Information for additional details). Eleven measures were summed to create a “disability score” (mean ± SD, 13.1 ± 5.4; range, 5.2 to 23.8). As expected if disability score indicates degree of physical limitation and inactivity over the long term, participants who reported no longer being able to carry heavy loads (eg, a quintal of rice, ~45 kg) scored higher than...
participants reporting continued ability based on systematic questioning during medical exams.

Data analysis

The World Health Organization (WHO) defines osteoporosis using a DXA-derived T-score of –2.5 at the spine, femoral neck, or total hip (T-scores between –1.0 and –2.5 indicate low bone mass, and scores above –1.0 are considered normal). T-scores represent the difference in one’s BMD from the mean in a young adult (aged 20 to 29 years) population, expressed in SD units. Here T-scores are calculated as follows: \(T = (P - YA)/SDVA \), where \(P \) is one’s estimated BMD, \(YA \) is the Tsimane young adult reference group mean estimated BMD specific to each sex, and \(SDVA \) is the standard deviation of the Tsimane young adult mean (see the Supporting Information for additional details on Tsimane young adult reference data). We use a calcaneal qUS-specific T-score threshold of –1.8 to identify individuals with reduced bone status (following Frost and colleagues,\(^{56}\) where it is suggested that the WHO threshold of \(T = –2.5 \) for diagnosing osteoporosis requires modification when utilizing qUS).

Mann-Whitney \(U \), chi square, and Kruskal-Wallis tests are used to compare study variables across groups (eg, T-score group). To compare sexes we examine effect sizes in sex-specific multivariate analyses, we include sex as a main effect in analyses of the pooled sample, and we include interaction effects of sex and other predictors hypothesized to affect qUS parameters. We report results for SOS, BUA, and QUI because some qUS parameters may be more strongly associated with certain microarchitectural bone properties. Most participants received one ultrasound but a random subset (7%, \(n = 10 \)) received two because they received two medical exams during the study period (one per year). These repeated measures are included in analyses to avoid unnecessarily reducing sample sizes, and because parameter estimates from multivariate analyses are directly comparable to those omitting repeated measures. Generalized estimating equations (GEEs) analyses are used to model effects of predictors on qUS parameters. The GEE method accounts for the correlated structure of a dependent variable arising from repeated measures over time, controlling for each individual.\(^{57}\) For continuous outcomes (SOS, BUA, QUI) parameter estimates are reported as standardized betas unless otherwise noted. To model the probability of having reduced bone status, parameter estimates are reported as odds ratios (ORs) or predicted probabilities unless otherwise noted. There is no standard absolute goodness-of-fit measure with the GEE method.

Results

Sample characteristics

Means ± SDs by sex and T-score group indicating bone status are shown in Table 1. Twenty-four percent of adults (25% women, 23% men) are classified as having reduced bone status. Older age and shorter stature are risk factors for both sexes, but only among women is reduced body mass—particularly reduced adiposity—associated with reduced bone status. Higher disability score is also associated with reduced bone status, particularly for women. Thirteen percent of adults (\(n = 19 \)) reported any fracture in adulthood (age 18+ years), and prior adult fracture is associated with reduced bone status. Descriptive statistics on fracture histories and variables used in subsequent regressions are available in the Supporting

| Table 1. Sample Means ± SDs by Sex and T-Score Group Indicating Bone Status Among Tsimane Aged 50+ Years (\(n = 142 \)) |
|---|---|---|---|---|---|---|---|
| Variable | Female | | | Male | | | |
| | Higher bone status | Low bone status | HvL | Higher bone status | Low bone status | HvL | |
| | \(n = 54 \) | \(n = 18 \) | | \(n = 54 \) | \(n = 16 \) | | |
| Age (years) | 59.7 ± 6.3 | 69.8 ± 9.9 | *** | 60.9 ± 8.3 | 66.3 ± 9.5 | * | |
| Height (cm) | 149.8 ± 3.8 | 148.0 ± 5.9 | * | 160.3 ± 4.8 | 157.2 ± 4.1 | * | |
| Weight (kg) | 53.8 ± 7.5 | 45.4 ± 8.3 | *** | 60.3 ± 7.7 | 59.3 ± 7.6 | NS | |
| BMI (kg/m²) | 24.0 ± 3.0 | 20.7 ± 3.3 | ** | 23.5 ± 3.0 | 24.1 ± 3.4 | NS | |
| Body fat (%) | 26.4 ± 6.7 | 21.0 ± 7.9 | ** | 17.8 ± 6.8 | 20.9 ± 6.9 | NS | |
| Fat mass (kg) | 14.6 ± 5.4 | 9.8 ± 4.8 | *** | 11.1 ± 5.5 | 12.7 ± 5.8 | NS | |
| Fat-free mass (kg) | 39.3 ± 3.6 | 35.5 ± 5.8 | ** | 49.2 ± 4.8 | 46.7 ± 4.6 | ^ | |
| WBC count (cells/µL) at qUS measurement | 9076 ± 2177 | 9785 ± 2431 | NS | 9710 ± 2509 | 10186 ± 2682 | NS | |
| Disability score^a | 12.3 ± 4.1 | 17.6 ± 5.3 | *** | 11.9 ± 5.3 | 15.9 ± 7.4 | ^ | |
| Ever fractured bone as adult^b (%) | 4 | 22 | * | 13 | 38 | * | |
| BUA (dB/MHz) | 60.0 ± 11.0 | 37.2 ± 5.4 | *** | 64.6 ± 10.7 | 44.3 ± 8.2 | *** | |
| SOS (m/s) | 1516 ± 19 | 1485 ± 11 | *** | 1522 ± 18 | 1489 ± 10 | *** | |
| QUI | 75.1 ± 11.4 | 53.1 ± 4.8 | *** | 79.5 ± 10.9 | 57.6 ± 4.5 | *** | |

For 10 individuals with repeated qUS measures the average value on a given variable was used to calculate means and determine T-score group. HvL indicates higher (T-score > –1.8) versus low (≤ –1.8) bone status. Values of \(p \) are from a Mann-Whitney \(U \) or \(\chi^2 \) test. NS = not significant; BMI = body mass index; WBC = white blood cell; qUS = quantitative ultrasonography; BUA = broadband ultrasound attenuation; SOS = speed of sound; QUI = quantitative ultrasound index.

^aHigher score indicates greater degree of physical limitation.

^bBased on self-report: 1/6 women who fractured a bone received radiographic confirmation from a San Borja physician (the remainder did not visit a physician); 6/13 men who fractured a bone received radiographic confirmation.

\(^p ≤ 0.1; ^a p ≤ 0.05; ^{**} p ≤ 0.01; ^{***} p ≤ 0.001. \)
Controlling for age, men have higher BUA (Std. \(\beta_{\text{Age}} = -0.535, 95\% \text{ CI: } -0.703 \text{ to } -0.367, p < 0.001\)) versus women aged 65, 75, and 85 years, respective predicted probabilities of having reduced bone status (age-adjusted interaction (Supporting Table 4). Although sex does not predict probability of having reduced bone status; for women aged 65, 75, and 85 years with adiposity 1.5 SDs below (versus above) the mean of 24.8%, respective predicted probabilities are 0.59 (0.08), 0.90 (0.35), and 0.98 (0.77).

qUS parameters by age

Women

qUS parameters decline linearly with age (Supporting Fig. 2), and show similar significant age-related declines (BUA: Std. \(\beta_{\text{Age}} = -0.179, 95\% \text{ CI: } -0.431 \text{ to } 0.073, p = 0.163\), SOS: Std. \(\beta_{\text{Age}} = -0.194, 95\% \text{ CI: } -0.405 \text{ to } 0.017, p = 0.072\), and QUI (Std. \(\beta_{\text{Age}} = -0.199, 95\% \text{ CI: } -0.419 \text{ to } 0.021, p = 0.077\) (Supporting Fig. 2). From age 50 to 85 years fitted BUA values decline by 48%, QUI declines by 40%, and SOS declines by 3%. For women aged 65, 75, and 85 years, respective predicted probabilities of having reduced bone status are 0.27, 0.67, and 0.92 (OR per year = 1.18, 95% CI: 1.08 to 1.29, \(p < 0.001\)).

Men

Weak age-related declines are evident for BUA (Std. \(\beta_{\text{Age}} = -0.019, 95\% \text{ CI: } -0.140 \text{ to } 0.072, p = 0.077\)), and QUI (Std. \(\beta_{\text{Age}} = -0.018, 95\% \text{ Cl: } -0.149 \text{ to } 0.021, p = 0.077\) (Supporting Fig. 2). From age 50 to 85 years fitted BUA values decline by 15%, QUI declines by 14%, and SOS declines by 1%. For men aged 65, 75, and 85 years, respective predicted probabilities of having reduced bone status are 0.25, 0.40, and 0.57 (OR per year = 1.07, 95% Cl: 1.01 to 1.14, \(p = 0.026\)).

Women versus men

Controlling for age, men have higher BUA (Std. \(\beta_{\text{Male}} = 0.371, 95\% \text{ Cl: } 0.073 \text{ to } 0.669, p = 0.015\)), QUI (Std. \(\beta_{\text{Male}} = -0.307, 95\% \text{ CI: } 0.010 \text{ to } 0.603, p = 0.043\)), and SOS (Std. \(\beta_{\text{Male}} = 0.239, 95\% \text{ CI: } -0.061 \text{ to } 0.539, p = 0.118\)), although the latter effect is not significant. For each qUS parameter age-related decline is greater for women, as indicated by a significant age-sex interaction (Supporting Table 4). Although sex does not predict probability of having reduced bone status (age-adjusted OR\(_{\text{Male}} = 0.85, 95\% \text{ CI: } 0.36 \text{ to } 2.00, p = 0.712\)), women experience higher risk than men with age (age-sex interaction \(p = 0.067\), see Supporting Table 4D).

qUS parameters by anthropometrics

Women

qUS parameters are positively associated with weight but not height controlling for age (Supporting Table 5). In stepwise models, height is not a significant predictor of any qUS parameter controlling for adiposity and fat-free mass. BUA is associated with adiposity (Std. \(\beta_{\text{body fat}} = 0.221, 95\% \text{ CI: } 0.043 \text{ to } 0.399, p = 0.015\), controlling for age and fat-free mass) and fat-free mass (Std. \(\beta_{\text{fat-free mass}} = 0.194, 95\% \text{ CI: } 0.010 \text{ to } 0.378, p = 0.038\), controlling for age and percent body fat). Adiposity but not fat-free mass predicts SOS (Std. \(\beta_{\text{body fat}} = 0.333, 95\% \text{ CI: } 0.131 \text{ to } 0.534, p = 0.001\), controlling for age) and QUI (Std. \(\beta_{\text{body fat}} = 0.318, 95\% \text{ CI: } 0.139 \text{ to } 0.497, p < 0.001\). Although the effect of age on qUS parameters is attenuated after inclusion of anthropometric variables (compared to bivariate analyses in section “qUS parameters by age, Women”), age remains the strongest predictor, with effect sizes ranging from 0.42 to 0.53 SDs (Supporting Table 5). Age and adiposity significantly predict probability of having reduced bone status; for women aged 65, 75, and 85 years with adiposity 1.5 SDs below (versus above) the mean of 24.8%, respective predicted probabilities are 0.59 (0.08), 0.90 (0.35), and 0.98 (0.77).

Men

Neither BUA, SOS, QUI, nor probability of having reduced bone status is significantly associated with any anthropometric variable (Supporting Table 5). Moreover, no qUS parameter is associated with the ratio of fat-free to fat mass for either sex.

Women versus men

SOS and QUI positively co-vary with adiposity for women but not men, as indicated by a significant sex-percent body fat interaction controlling for age and age-sex (Supporting Table 5, Supporting Fig. 3). Probability of having reduced bone status is inversely associated with adiposity for women but not men (sex-percent body fat interaction \(p = 0.044\), using controls in Supporting Table 5: Model C3). No significant sex-fat-free mass interaction was found for any qUS parameter.

qUS parameters by degree of immune activation and physical limitation

qUS parameters are inversely associated with WBC count controlling for potential confounders (Table 2). Across the range of observed WBC counts (4500 to 16,400 cells/μL), fitted BUA values for women (men) decline by 18% (17%), QUI declines by 16% (15%), and SOS declines by 1% (1%) after controlling for significant predictors in Supporting Table 5: Model 3 (also see Supporting Fig. 4). We tested for a WBC count-age interaction but found no significant effect.

Disability score is weakly associated with qUS parameters in the predicted negative direction (Table 2). Although disability score is more strongly correlated with qUS parameters for women than men (Table 1, Supporting Table 2), no significant sex-disability score interaction was found for any qUS parameter. WBC count is not positively associated with disability score for either sex (Supporting Table 2), and no significant WBC count-age disability score interaction was found for any qUS parameter.

Figure 1 presents the relative contribution of predictors in affecting qUS parameters (only main effects are shown). Age is consistently the strongest predictor; adiposity and WBC count are the only other predictors with significant effects across all qUS parameters.

Immune activation within adults over time, and comparison of qUS parameters across immune activation groups

WBC count during medical exams at the time of qUS measurement is moderately correlated with WBC count from the previous medical exam (partial \(r = 0.462\), \(p < 0.001\), controlling for time [in years] between measures). Using a cutoff of >10,000 cells/μL to indicate high WBC count (http://www.nlm.nih.gov/
Extraction not available.
qUS parameters is attenuated for men (Table 2, Supporting Figs. 2–4). Lower peak bone mass attained by women in early adulthood, maternal depletion of mineral reserves given high fertility and prolonged on-demand breastfeeding, and declining sex steroid hormone concentrations accompanying menopause all likely contribute to reduced bone status and greater age-related decline in qUS parameters among Tsimane women.

Adiposity and fat-free mass are positively associated with calcaneal BUA (Table 2, Fig. 1), an indicator of trabecular separation and connectivity, but only among Tsimane women (Supporting Table 5). In energy-limited settings greater adiposity reflects improved nutritional status, and can attenuate rate of bone loss via endocrine mechanisms, although here we do not consider effects of hormonal mediators on qUS parameters. Fat-free mass in part reflects physical activity level and associated effects on bone of muscle contractions, which aside from trauma represent the greatest skeletal loads. The relative contribution of adiposity and fat-free mass to BMD in older adulthood is currently debated, with some suggesting that adiposity is more important, others suggesting fat-free mass, and others assigning similar weight to both tissues. Heterogeneity in previous findings may result from lack of a gold standard in separating effects of fat and muscle tissues (which are collinear but may co-vary in different ways by sex; see Supporting Table 2), and from differences across studies in bone strength indices used and skeletal sites measured. For Tsimane women, main effect sizes for adiposity and fat-free mass on BUA are similar (0.22 and 0.19, respectively; see Supporting Table 5: Model A2), but only adiposity is associated with SOS and QUI. Reduction in bone status is thus consistently attenuated with greater adiposity among postmenopausal women in this energy-limited and high fertility setting. The fact that neither adiposity nor fat-free mass predicts any qUS parameter among Tsimane men is surprising, and we hypothesize that rate of periosteal expansion is accelerated (attenuating rate of loss) among active foragers due to habitually greater skeletal loading. This could compensate for age-related bone loss by maintaining favorable geometric bone properties and structural resistance to loading and fragility fracture, even with lower bone mass, although this hypothesis has not yet been tested in vivo among foragers.

Limitations

First, we use qUS to assess bone status and lack DXA-derived BMD measures, which are preferred for diagnostic purposes. Moreover, lacking imaging data (eg, from quantitative computed tomography) we cannot distinguish between trabecular and cortical bone properties, or examine microarchitecture that can affect bone strength independently of BMD. Second, the study design is cross-sectional, which limits our ability to document age-related change in qUS parameters, or establish that hypothesized predictors cause reduced bone status. Third, we use bioelectrical impedance analyses (BIA) to estimate body composition (eg, fat-free mass) and lack DXA-derived measures; BIA cannot distinguish between intracellular and extracellular water content and is prone to greater measurement variability due to hydration status (for which we lack data). Fourth, we utilize an indirect measure of physical activity, which may partly account for the weak association between inactivity and qUS parameters. We also lack data on strain frequency and intensity, which are useful for determining whether certain activities (eg, carrying heavy loads, running) are more likely to induce osteogenic responses. Fifth, we lack individual-level data on nutrient intake and alcohol use, which may affect associations reported here. Sixth, given our focus on older adults, we are unable to determine whether results generalize to younger adults. Last, despite an active lifestyle and lack of public health infrastructure, Tsimane are not pure hunter-gatherers and may differ in important ways from ancestral human populations in terms of residential mobility, diet, and disease exposures. Yet no population represents the range of experiences across different environments that shaped the evolution of our species over the millennia in which global climates and ecologies fluctuated.
Conclusion

Reduced bone status characteristic of osteoporosis is relatively common among Tsimane older adults with minimal exposure to osteoporosis risk factors found in industrialized societies. Despite showing relatively high physical activity levels typical of other subsistence populations, energetic limitation and greater immune activation contribute to reduced bone status among Tsimane. Future research that explores whether and how these factors affect bone microarchitecture and fracture risk, and how they interact with age, sex, and physical activity level in determining bone strength is likely to reveal novel insights.

Disclosures

All authors state that they have no conflicts of interest. Funding sources had no direct involvement in study design, data collection, analysis, interpretation of data, or manuscript preparation or submission.

Acknowledgments

Funding was provided by the National Institutes of Health/National Institute on Aging (R01AG024119). JS acknowledges support from the Agence Nationale de la Recherche (ANR) - Labex IAST. We thank the Tsimane for participating and THLHP personnel for collecting and coding data. Three anonymous reviewers provided important comments that improved the quality of the manuscript.

Authors’ roles: All authors designed the study; JS collected the data, conducted analyses and wrote the manuscript; all authors commented on and approved the manuscript. JS accepts responsibility for the integrity of the data analysis.

References

