I. Course description
This course is designed to provide a relatively comprehensive understanding of paleoethnobotany, in addition to hands-on experience working with plant remains. We will focus primarily on macro-remains, although we will minimally discuss pollen and phytolith data as well. We consider the history of the discipline, field and lab methodology, the uses of macrobotanical data to reconstruct environment and subsistence, spatial versus temporal analysis, quantitative methods, and taxonomy. Readings cover the above topics, in addition to several case studies. Class will be divided between seminar and lab time. Students will be involved in hands-on microscope work, and will collectively conduct an analysis of a macrobotanical assemblage, culminating in a class project.

II. Course Requirements
Students will be evaluated by attendance and participation in seminar and lab; brief annotations of readings assignments due weekly; a small project involving the collection of modern comparative specimens; and a final project that is the outcome of the botanical analysis conducted by the class in the lab sessions.

Grading
- Seminar Participation 15%
- Reading Annotations 20%
- Lab Attendance 15%
- Collection Project 20%
- Final Project 30%

Readings Annotations
Readings are required and students should be prepared to discuss them in seminar. Students are required to annotate each reading, providing a 100-200 word summary of pertinent information. These are due each Tuesday in class. Annotations should be single spaced and handed in at the end of class. See course schedule for reading assignments.

Seminar Participation
It is expected that students will come to class regularly and participated in class discussion during the seminar. While students will not be directly penalized for missing class, attendance will be taken, and students that attend regularly and participate will benefit when final grades are calculated.

Lab Attendance
In addition, you are expected to show up for the lab component of the class. If you do not regularly attend the lab component of the class, then you will not complete the identification of your samples, which are necessary in order to complete your final class project.

Collection Project
For this project, each student will be given a list of three plants that are native to the region. Each student must locate and collect samples from each of their assigned plants. In addition to collecting the specimens, students will provide information on taxonomy, life cycle, seasonality, etc. Additional Information on this assignment is available on Gauchos Space. I will assign your plant species for collection during the 3rd week of classes. **The Collection Project due date is Monday, February 27th (Week 8).**

Final Project
The final project will comprise the remaining 30% of the final grade. Throughout the semester, students will learn and practice their plant identification skills on an assemblage from the C. W. Cooper site from the Central Illinois River Valley. The data that are collected will be recorded by the students and collated by Dr. VanDerwarker into a master database, and distributed to students at the end of Week 9. Each student will then conduct a quantitative analysis and write up a report including sections on methods of identification and analysis, summary of basic results, a detailed quantitative data presentation, and final interpretations. The report should be 7-10 pages of double-spaced text, accompanied by supporting tables and figures (Graduate student reports should be between 15-20 pages). More specific guidelines will be forthcoming. **The final project report will be due on the Friday of Final Exam week (March 23rd – NO LATER than 3pm).** This will give everyone 2 weeks for data analysis and write-up. You can consider the final project report as a take-home final exam.

III. Readings
All of the readings are available as PDFs on Gauchos Space (https://gauchospace.ucsb.edu/). You will need to log on and add yourself to the course ANTH 186 in order to access these PDFs. See **Class Schedule** below for the reading schedule.

IV. Class Schedule
Each week will be divided into discussion/seminar format and lab format. Mondays are reserved for discussions, and Wednesdays for labs.

MONDAY SEMINARS will be held in HSSB 2001A
WEDNESDAY LAB will be held in HSSB 1021

WEEK 1: Getting Started
- Monday, Jan 9th, initial class meeting
 - Outline of Course Objectives
 - Setting up Seminar moderator schedule
- Wednesday, Jan 11th, Lab Orientation

WEEK 2: An Overview of Paleoethnobotany & History of Research
- Monday, Jan 16th – Holiday NO CLASS – Seminar will be held on Wed in HSSB 2001A
- Wednesday, Jan 18th, Seminar
 - Readings:
WEEK 3: Preservation/Taphonomy of Plant Assemblages

- Monday, Jan 23rd, Seminar
 - Readings:

- Wednesday, Jan 25th, Begin sorting samples

WEEK 4: Sampling and Recovery

- Monday, Jan 30th, Seminar
 - Readings:

- Wednesday, Feb 1st, Lab, Flotation Demonstration – the Flotetech and Bucket Methods (meet in HSSB 1021)

WEEK 5: Quantitative/Analytical Methods

- Monday, Feb 6th, Seminar
 - Readings:

Wednesday, Feb 8th, Lab, Continue Sorting Samples

WEEK 6: Basic subsistence reconstruction

Monday, Feb 13th, Seminar
 ➢ Readings:

Wednesday, Feb 15th, Lab, Continue Sorting Samples

WEEK 7: Environmental Reconstruction and Paleoecology

Monday, Feb 20th – Holiday NO CLASS – Seminar will be held on Wed in HSSB 2001A

Wednesday, Feb 22nd, Seminar
 ➢ Readings:
WEEK 8: Domestication & Agriculture in North America

- Monday, Feb 27th, Seminar
 - Readings:

- Wednesday, Feb 29th, Lab, Continue Sorting Samples

WEEK 9: Domestication & Agriculture in Latin America

- Monday, March 5th, Seminar
 - Readings:

- Wednesday, March 7th, Lab, Continue Sorting Samples

WEEK 10: Social and Political Complexity

- Monday, March 12th, Seminar
 - Readings:

• Wednesday, March 14th, Lab, Complete Samples, and Finalize Forms