I. Course description
This course is designed to provide a relatively comprehensive understanding of zooarchaeology, in addition to hands-on experience working with animal skeletal remains. We will focus primarily on vertebrates, although we will minimally discuss invertebrates as well. We consider the history of the discipline, field and lab methodology, the uses of zooarchaeological data to reconstruct environment and subsistence, spatial versus temporal analysis, quantitative methods, and taxonomy. Readings cover the above topics, in addition to several case studies. Class will be divided between seminar/lecture and lab time. Students will be involved in hands-on identification, and will collectively conduct an analysis of a zooarchaeological assemblage, culminating in a final project.

II. Course Requirements
Students will be evaluated by attendance and participation in seminar and lab; brief annotations of readings assignments due weekly; weekly labs; an animal habitat project; and a final project that is the outcome of the zooarchaeological analysis conducted by the class in the lab sessions. Extra lab time will be required to study for Osteology quizzes and to identify bones for the final project report. Extra lab time will be Mondays and Wednesdays 12:00-1:30.

Grading
- Seminar Participation 10%
- Reading Annotations 15%
- Lab Attendance 10%
- Quizzes (4 = 5%) 20%
- Habitat Project 15%
- Final Project 30%

Readings Annotations
Readings are required and students should be prepared to discuss them in seminar. Students are required to annotate each reading, providing a 100-200 word summary of pertinent information. These are due each Monday in class. Annotations should be single spaced and handed in at the end of class. See course schedule for reading assignments. Each week, one or two graduate students will be in charge of leading seminar discussion of the articles during weeks 6-9.

Seminar Participation
It is expected that students will come to class regularly and participate in class discussion during the seminar. While students will not be directly penalized for missing class, attendance will be taken; students who do not regularly attend will suffer in their participation grade. Seminar discussion will be led by graduate students in the course (weeks 6-9) – it will be their job to prepare discussion questions about the readings and to prepare together in advance of the seminar.

Lab Attendance
In addition, you are expected to show up for the lab component of the class. If you do not regularly attend the lab component of the class, then you will fail your ID quizzes, and you will not complete the identification of your samples, which are necessary in order to complete your final class project. In order to have sufficient time to study for quizzes and
complete your sample identification, extra lab times are available prior to class (Mondays 12:00-1:30 and Wednesdays 11:00-12:30). It is unlikely that you will pass your quizzes without spending extra time in the lab.

White-tailed Deer Habitat, Seasonality, and Ageing/Sexing Project

For this project, the class will be divided into 3 groups, one of which will consist solely of graduate students. Each group will be assigned a topic related to deer (habitat/habits, seasonality, methods of ageing/sexing), and will be responsible for researching all aspects of these topics as they relate to Central Illinois (the region from which your final project assemblage derives). Most of the information will be general, but there may be some specific information related to habitats that pertains to the region. Each group will prepare a well-written, organized, and well referenced handout for each classmate. Informal group presentations will be held on Wednesday of Week 5 (Feb 6), after the quiz on fishes.

Final Project

The final project will comprise the remaining 30% of the final grade. At the end of the quarter, Dr. VanDerwarker will provide a dataset from a faunal collection from the Central Illinois River Valley (all data will be in excel spreadsheet format). This database will be distributed to students during Week 7. Each student will then conduct a quantitative analysis and write up a report including sections on methods of identification and analysis, summary of basic results, a detailed quantitative data presentation, and final interpretations. For the undergraduates, the report should be 7-10 pages of double-spaced text; Graduate student reports should be 14-16 pages of text. All reports should be accompanied by supporting tables and figures. More specific guidelines will be forthcoming. The final project report will be due on the Friday of Final Exam week (March 22nd, 3pm). This will give everyone 4 weeks for data analysis and write-up. You can consider the final project report as a take-home final exam.

III. Readings

All of the readings (with the exception of readings from the 2 books below) are available as PDFs on Gaucho Space. See the course schedule below to see the order of readings. Books are listed here, but the articles are listed only in the course schedule. You are expected to have already read the assigned reading prior to the day it is listed. Your annotations will be due at the end of each class for which you were assigned readings. The books below are on sale at the bookstore, or you can order them online.

IV. Class Schedule

Each week will be divided into discussion/seminar format and lab format. Mondays are reserved for discussions/lectures, and Wednesdays for labs. Both will be held in HSSB 1021, the department’s teaching lab.

Week 1: Getting Started

- Monday, Jan 7
 - Outline of Course Objectives
 - Lab Orientation & Tour of Facilities
 - Mammalian Osteology lab (includes intro to terminology)
- Wednesday, Jan 9, Lecture
 - Readings:
 - Reitz and Wing, *Zooarchaeology*, Chapters 1-3 (annotate EACH chapter)
WEEK 2: An Overview of Zooarchaeology & History of Research
- Monday, Jan 14, Lecture
 - Readings:
 - Lyman, *Vertebrate Taphonomy*, Chapters 1-3 *(annotate EACH chapter)*
- Wednesday, Jan 16, Lab
 - Quiz on Mammalian Osteology (elements, orientation, taxonomic identification)
 - Avian Osteology Lab

WEEK 3: Preservation/Taphonomy of Zooarchaeological Assemblages
- Monday, Jan 21, NO CLASS, HOLIDAY
- Wednesday, Jan 23, Lab
 - Quiz on Avian Osteology (elements, orientation, taxonomic identification)
 - Reptiles/Amphibians Lab

WEEK 4: Sampling, Recovery, & Quantification
- Monday, Jan 28, Lecture
 - Readings:
 - Reitz and Wing, *Zooarchaeology*, Chapter 5
- Wednesday, Jan 30, Lab
 - Quiz on Reptiles/Amphibian (elements, orientation, taxonomic identification)
 - Bony & Cartilaginous Fishes Lab

WEEK 5: Ageing and Sexing & Research Design
- Monday, Feb 4, Lecture
 - Readings:
 - Reitz and Wing, *Zooarchaeology*, Chapters 6-7 *(annotate EACH chapter)*
- Wednesday, Feb 6, Lab
 - Quiz on Fishes (elements, orientation, taxonomic identification)
 - Animal Habitat Presentations

WEEK 6: Basic subsistence reconstruction
- Monday, Feb 11, Seminar
 - Readings:
 - Reitz and Wing, *Zooarchaeology*, Chapter 8
- Wednesday, Feb 13, Lab
 - Sorting/Identifying Deer Samples

WEEK 7: Environmental Reconstruction and Paleoecology
- Monday, Feb 18, NO CLASS - HOLIDAY
- Wednesday, Feb 20, Seminar
 - Readings:
 - Reitz and Wing, *Zooarchaeology*, Chapter 10
VanDerwarker, Zooarchaeology Syllabus

WEEK 8: Butchering, Transport, and Body Part Indices
- Monday, Feb 25, Seminar
 - Readings:
 - Lyman, *Vertebrate Taphonomy*, Chapter 7
- Wednesday, Feb 27, Lab
 - Sorting/Identifying Deer Samples

WEEK 9: Social Complexity
- Monday, March 4, Seminar
 - Readings:
 - VanDerwarker, 1999, Feasting and Status at the Toqua Site, *Southeastern Archaeology* 18(1):24-34.
- Wednesday, March 6, Lab
 - Sorting/identifying deer

WEEK 10: WORK ON YOUR FINAL PROJECTS
- Monday, March 11, Lab
 - Sorting/identifying deer
- Wednesday, March 13, Lab
 - Sorting/identifying deer

FRIDAY, March 22nd – Final Project Reports are due by 3pm in hard copy format in my office HSSB 1038.